一区二区日本_久久久久久久国产精品_无码国模国产在线观看_久久99深爱久久99精品_亚洲一区二区三区四区五区午夜_日本在线观看一区二区

Do more with less data

Albumentations is a computer vision tool that boosts the performance of deep neural networks.

The library is widely used in industry, deep learning research, machine learning competitions, and open source projects.

Albumentations example

Why Albumentations?

Fast & Performant

Boost model accuracy with highly optimized, benchmark-proven augmentations.

Unmatched Versatility

>100 transforms for images, masks, bounding boxes, keypoints & 3D. Used in medical, satellite, self-driving, and more.

Effortless Integration

Familiar API, similar to torchvision, for easy adoption in PyTorch, TensorFlow, and other frameworks.

Proven & Trusted

Widely adopted in research, competitions (like Kaggle), and commercial applications.

Powerful Features

Versatile Transforms

Pixel-level adjustments (brightness, contrast, noise) and spatial transformations (rotate, scale, flip).

Learn More

Task Agnostic

Consistently handles images, segmentation masks, bounding boxes, and keypoints through any augmentation pipeline.

Learn More

Performance Focused

Highly optimized code ensures minimal overhead, crucial for training large models. See benchmarks.

Learn More

Framework Agnostic

Works seamlessly with PyTorch, TensorFlow, Keras, and other frameworks, using standard NumPy arrays.

Learn More

Extensible

Easily create custom augmentations or pipelines to fit your specific research or application needs.

Learn More

Easy Serialization

Save and load augmentation pipelines using YAML or JSON for reproducibility and sharing.

Learn More

Community Feedback

Community feedback from linkedin: CEO of Datature
CEO of Datature
Community feedback from twitter: Kaggle Competitions Grandmaster. Top 1 in the world.
Kaggle Competitions Grandmaster. Top 1 in the world.
Community feedback from linkedin: Computer Vision Engineer
Computer Vision Engineer

Community-Driven Project, Supported By

Albumentations thrives on developer contributions. We appreciate our supporters who help sustain the project's infrastructure.

??Integration Partner

Your company could be here

??Exclusive Partner

Your company could be here

Citing

If you find Albumentations useful for your research, please consider citing the paper:

@Article{info11020125,
    AUTHOR = {Buslaev, Alexander and Iglovikov, Vladimir I. and Khvedchenya, Eugene and Parinov, Alex and Druzhinin, Mikhail and Kalinin, Alexandr A.},
    TITLE = {Albumentations: Fast and Flexible Image Augmentations},
    JOURNAL = {Information},
    VOLUME = {11},
    YEAR = {2020},
    NUMBER = {2},
    ARTICLE-NUMBER = {125},
    URL = {https://www.mdpi.com/2078-2489/11/2/125},
    ISSN = {2078-2489},
    DOI = {10.3390/info11020125}
}

Read the paper: Information, Volume 11, Issue 2

主站蜘蛛池模板: 久久99久久 | www.xxxx欧美| 国产色在线| 久久精品 | 中文字幕一区二区三区日韩精品 | 麻豆亚洲 | 蜜桃视频一区二区三区 | 国产精品久久久久久 | 国产精品美女久久久久久久网站 | 亚洲天堂一区二区 | 国产精品久久久久久久一区二区 | 国产一区二区三区在线看 | 一级黄色毛片 | 日韩高清中文字幕 | 日韩av一区二区在线观看 | 一区二区三区精品视频 | 91精品国产91久久久久久最新 | 日韩精品一区二区三区在线播放 | 国产片一区二区三区 | 欧美激情综合色综合啪啪五月 | 中文字幕精品一区久久久久 | 久久精品网 | 看片91| 欧美一区二区三区,视频 | 91在线看片 | 午夜天堂精品久久久久 | 中文字幕精品一区二区三区精品 | 99国产在线 | 国产精品1| 国产成人免费视频 | 国产精品久久久久久久久久东京 | 成人精品一区二区三区四区 | 久久久久久久一区 | 亚洲第一网站 | 免费精品视频 | 亚洲精品一区二区三区四区高清 | 99免费在线视频 | 国产丝袜一区二区三区免费视频 | 91麻豆精品国产91久久久久久 | 五月天综合网 | 国产2区 |