一区二区日本_久久久久久久国产精品_无码国模国产在线观看_久久99深爱久久99精品_亚洲一区二区三区四区五区午夜_日本在线观看一区二区

Skip to content

FaceAdapter/Face-Adapter

Repository files navigation

Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control

arXiv GitHub

Introduction

Face-Adapter is an efficient and effective face editing adapter for pre-trained diffusion models, specifically targeting face reenactment and swapping tasks.

Release

  • [2024/5/25] ?? We release the gradio demo.
  • [2024/5/24] ?? We release the code and models.

Installation

# Torch >= 2.0 recommended for acceleration without xformers
pip install accelerate diffusers==0.26.0 insightface onnxruntime

Download Models

You can download models of FaceAdapter directly from here or download using python script:

# Download all files 
from huggingface_hub import snapshot_download
snapshot_download(repo_id="FaceAdapter/FaceAdapter", local_dir="./checkpoints")

# If you want to download one specific file
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="FaceAdapter/FaceAdapter", filename="controlnet/config.json", local_dir="./checkpoints")

To run the demo, you should also download the pre-trained SD models below:

? Quick Inference

SD_1.5

python infer.py 

You can adjust the cropping size with the --crop_ratio (default:0.81)parameter. But be careful not to set the crop range too large, as this can decrease the quality of the generated images due to the limit of the training data size.

?? FaceAdapter can be seamlessly plugged into community models:

python infer.py --base_model "frankjoshua/toonyou_beta6"

Disclaimer

This project strives to positively impact the domain of AI-driven image generation. Users are granted the freedom to create images using this tool, but they are expected to comply with local laws and utilize it in a responsible manner. The developers do not assume any responsibility for potential misuse by users.

Citation

If you find Face-Adapter useful for your research and applications, please cite using this BibTeX:

@article{han2024face,
  title={Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control},
  author={Han, Yue and Zhu, Junwei and He, Keke and Chen, Xu and Ge, Yanhao and Li, Wei and Li, Xiangtai and Zhang, Jiangning and Wang, Chengjie and Liu, Yong},
  journal={arXiv preprint arXiv:2405.12970},
  year={2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages

主站蜘蛛池模板: 免费成人国产 | 亚洲欧美日韩久久久 | 91.com在线观看 | 日韩三级在线观看 | 久在线 | 精品国产欧美一区二区三区成人 | 黄色一级网 | 亚洲国产精品va在线看黑人 | 在线免费观看a级片 | 国内精品久久久久久影视8 最新黄色在线观看 | 成人免费观看男女羞羞视频 | 懂色中文一区二区三区在线视频 | 综合九九 | 日本一区二区不卡 | 国产精品日日夜夜 | 日韩精品在线播放 | 欧美精品1区 | 武道仙尊动漫在线观看 | 狠狠的干狠狠的操 | 91精品国产综合久久久久久蜜臀 | 中文字幕在线观看日韩 | 99reav| 青青草精品 | 毛片免费观看 | 18av在线播放| 欧美一二三四成人免费视频 | 成人在线中文字幕 | 久久精品免费看 | 日本在线综合 | 天天天天操 | 日韩中文一区二区三区 | 日韩无| 成人午夜av | 中文字幕亚洲一区二区va在线 | 97精品国产97久久久久久免费 | 亚洲精品在线免费观看视频 | 国产精品高清一区二区 | 久久久久国产一区二区三区四区 | 天天色图| 天天色天天射天天干 | 中文字幕日韩欧美 |