一区二区日本_久久久久久久国产精品_无码国模国产在线观看_久久99深爱久久99精品_亚洲一区二区三区四区五区午夜_日本在线观看一区二区

BuboGPT:

Enabling Visual Grounding in Multi-Modal LLMs


Bytedance Inc.   *Equal Contribution   +Project Lead

BuboGPT is an advanced Large Language Model (LLM) that incorporates multi-modal inputs including text, image and audio, with a unique ability to ground its responses to visual objects. It demonstrates remarkable chat abilities for arbitrary image-audio data understanding, whether aligned or unaligned.

Bubo owls are well known for having strong vision and hearing abilities that help them thrive.

Abstract

LLMs have demonstrated remarkable abilities at interacting with humans through language, especially with the usage of instruction-following data. Recent advancements in LLMs, such as MiniGPT-4, LLaVA, and X-LLM, further enlarge their abilities by incorporating multi-modal inputs, including image, video, and speech. Despite their effectiveness at generating precise and detailed language understanding of the given modality signal, these LLMs give up the ability to ground specific parts of inputs, thus only constructing a coarse-grained mapping. However, explicit and informative correspondence between text and other modalities will not only improve the user experience but also help to expand the application scenario of multi-modal LLMs.

  1. BuboGPT Architecture . We build a multi-modal LLM, BuboGPT for multi-modal understanding including image, audio and text by learning a common semantic space and further explore the fine-grained relation between different visual objects and different modalities.
  2. Multimodal Instruct Data. We construct a high-quality multi-modal instruction-tuning dataset including fine-grained audio descriptions and cross-modal sound localization, and introduce both positive and negative image-audio pairs for semantic matching to facilitate the cross-modal understanding..

BuboGPT Architecture

As the figure shown, we perform joint multi-modal understanding and chatting for text, vision and audio, which is achieved by learning a shared representation space that aligns well with pre-trained Vicuna. We also build an off-the-shelf visual grounding pipeline to explore the fine-grained relation between different visual objects and modalities.

The framework of BuboGPT.

BuboGPT: Training Procedure

BuboGPT connects different modality Q-Former with pre-trained large language model Vicuna, using a simple projection matrix. We consider a two-stage instruction-tuning procedure:

  • Stage 1: Single-modal Pre-training. We train the corresponding modality Q-Former and linear projection layer on a large number of modality-text paired data.
  • Stage 2: Multi-Modal Instruct Tuning. We curate a high-quality multi-modal instruction-following dataset to fine tune only the linear projection layer:
    • Image-Text: We employ two previously published datasets from MiniGPT-4 and LLaVa for visual instruct tuning.
    • Audio-Text: We build a series of expressive and descriptive data to facilitate this process based on Clotho dataset.
    • Audio-Image-Text: We build <audio, image, text> pairs to act as triple-modality instruction tuning dataset based on VGGSS dataset and further introduce negative set to enhance our model.

-->

Examples on Fine-grained Visual Understanding

We first consider using a single image as input for fine-grained visual understanding with grounding. As the exmaples shown, the model can accurately associate textural words or phrases with image regions in various scenarios with different complexities.


Examples on Audio Understanding

When a single audio clip is provided for audio understanding, BuboGPT gives informative descriptions covering nearly all acoustic parts included, even when some audio fragments are too short for humans to notice, see examples for details.


Examples on Aligned audio-image understanding

We show that BuboGPT can perform sound localization with a matched audio-image pair provided, which gives a perfect example for aligned audio-image understanding, see examples for details.


Examples on Arbitrary audio-image understanding

The BuboGPT can also tell whether the image and audio are relevant to each other and generate high-quality response for arbitrary audio-image understanding, see examples for details.

BibTeX


  @article{zhao2023bubogpt,
    author      = {Yang Zhao and Zhijie Lin and Daquan Zhou and Zilong Huang and Jiashi Feng and Bingyi Kang},
    title       = {BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs},
    publisher   = {arXiv:2307.08581},
    year        = {2023}
  }
  
主站蜘蛛池模板: 亚洲高清在线 | 中文字幕一区二区三区在线观看 | 亚洲一区二区免费 | 精品国产久 | 久久精品99国产精品 | 久久精品亚洲欧美日韩精品中文字幕 | 亚洲精品色 | 国产一区二区高清在线 | 成人在线精品视频 | 国产精产国品一二三产区视频 | 精品欧美一区二区三区精品久久 | 99精品国产一区二区三区 | 亚洲狠狠 | 嫩草视频免费 | 国产伦精品一区二区三区视频金莲 | 日本在线免费视频 | 亚洲aⅴ| 天天干天天玩天天操 | 91精品国产91久久久久久吃药 | 国产精品久久久久久二区 | 亚洲精品福利在线 | 国产乱肥老妇国产一区二 | 天堂一区二区三区 | 久久国产精品99久久久久久丝袜 | 免费黄网站在线观看 | 日本xx视频免费观看 | 国产91一区二区三区 | 91xx在线观看 | 欧美色综合网 | 成av在线 | 一区二区三区国产 | 欧美三区视频 | 成人午夜在线 | 成人精品鲁一区一区二区 | 久久久久久久久久久蜜桃 | 亚洲欧美一区二区三区国产精品 | 午夜视频在线观看网站 | 精品在线观看一区 | www国产精| 日本 欧美 三级 高清 视频 | 欧美成视频在线观看 |